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Abstract 

This note develops an explicit construction of the constrained KP hierarchy within the Sato 
Grassmannian framework. Useful relations are established between the kernel elements of the 
underlying ordinary differential operator and the eigenfunctions of the associated KP hierarchy as 
well as between the related bilinear concomitant and the squared eigenfunction potential. © 1999 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The purpose of this note is to present construction of the constrained KP (cKP) hierarchy 

within the Sato Grassmannian context using elements of the kernels of the underlying differ- 

ential operators. The fundamental concept is the canonical pairing (the bilinear concomitant) 

introduced here on the space of elements of the kernels of the underlying differential operator 

and its conjugated counterpart. The formalism is simplified by relations between the bilinear 

concomitant and the squared eigenfunction potential (SEP) which emerged before in the 
setting of the KP hierarchy [1-3]. The claim is that use of SEP makes construction of the 
cKP hierarchy within the Sato Grassmannian theory of the KP hierarchy more transparent. 

The cKP hierarchy has recently been discussed in [4-7] using Segal-Wilson modification 

of the Sato Grassmannian. This note provides a link between these works and the current 

formalism based on the Sato Grassmannian and the SEP method. Our approach emphasizes 
connection between elements of kernels of differential operators and eigenfunctions (see 
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below for the definition) of the pseudo-differential operators realized as ratios of the under- 
lying differential operators. These kernel elements yield a convenient parameterization for 

the "coordinate-free" characterization of cKP hierarchy developed in [6,7]. 

2. KP hierarchy 

We first briefly review the KP hierarchy of nonlinear evolution equations in the approach 

based on the calculus of the pseudo-differential operators. The main object here is the 

pseudo-differential Lax operator L: 

r - 2  

L = D r + Z v j D  j + Z u i D - i .  (2.1) 

j = 0  i> l  

The operator D satisfies the generalized Leibniz rule, so for instance [D, f ]  = f '  with 

f '  = Oxf  = Of /Ox. 
The associated isospectral flows are described by the Lax equations: 

O L = [ L + / r , L ] ,  n 1,2 . . . . .  (2.2) 
Otn 

with x = q. In (2.2) and below, the subscripts (-4-) of pseudo-differential operators in- 

dicate projections on purely differential/pseudo-differential parts. The Zakharov-Shabat 

zero-curvature equations ensure commutativity of the isospectral flows O/Otn in (2.2). 
For a given Lax operator L, which satisfies Sato's flow equation (2.2), the function 

(qJ), whose flows obey: 

O~ ,I /r  Oq/ -(L*)U+r(~),  1 = 1, 2 . . . . .  (2.3) 
Otl L+ (~) ,  Otl 

is called an (adjoint) eigenfunction of L. In (2.3) we have introduced an operation of 

conjugation, defined by simple rules D* = - D  and (AB)* = B ' A * .  Throughout this 
paper we will follow the convention that for any (pseudo-)differential operator A and a 

function f ,  the symbol A ( f )  will indicate application (action) of A on f while the symbol 
A f  will be just a product of A with the zero-order (multiplication) operator f .  

One can also represent the Lax operator in terms of the dressing operator W = 1 + 
y ~  wnD -n through L = W D r W -1 . In this framework, Eq. (2.2) is equivalent to the 
so-called Wilson-Sato equation: 

On W = - (W D n W -  1 ) _ W, (2.4) 

where On = O/Otn. Next, we define corresponding wave-eigenfunction via 

Ow(t ,  )~) = W(e ~(r')~)) = 1 -I- Wi(t)). - i  e ~(t'~'), 
i=1 

(2.5) 
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where 
OO 

~(t, ;~) = ~ t,)~", tl = x. (2.6) 

Similarly, there is also an adjoint wave-eigenfunction: 

~v  = W*-'(e-'(t 'z))= ( l  + ~ w[(t))~-i) (2.7) 

As seen from (2.4) and (2.5), the wave-eigenfunction is an eigenfunction which in addition 
to the first of Eqs. (2.3) also satisfies the spectral equations LTrw (,k, t) = LrOw (,k, t). The 
wave-eigenfunction and its adjoint enter the fundamental Hirota's bilinear identity: 

f d~ Z)C~w(t', ~) 0, (2.8) ~P~v (t, 

which generates the entire KP hierarchy via Hirota's equations for the underlying tau- 
functions (see e.g. [8]). In (2.8) and in what follows integrals over spectral parameters 
denote: f d)~ = f0 dL/2iJr = Resz=0. The proper understanding of (2.8) requires, following 
e.g. [8], expanding of 7/w(t', )~) in (2.8) as formal power series w.r.t, t,~ - t,,, n = 1, 2 . . . . .  
according to 

(tl t l )kl . .  ° ~t~ tn ) k,, 
v,w t', = - -  2.9) 

kl !' - .k,~! 

The wave function is an oscillatory function of order 0. Generally, the oscillatory function 

of order ! is of the form: 

It will be of importance for us that the action of the differential operator D can be inverted 
uniquely on the space of oscillatory functions according to 

D-i f ( t ,  ~.) e~(t.),l = Z ( _ l ) ~  f(co(t, ~.)L-I-~ eS(r.zl. (2.1 1) 
i f = 0  

Consider now the one-form: o) = Y~n Res( D - j  g'L+/rcpD-l)dt~ defined for a couple 
of (adjoint) eigenfunctions q~ and ~ .  As in [1,2] one can show using the Zakharov-Shabat 
equations that o) is a closed form with respect to exterior derivative d - ~ , ,  8,dr,,. By 
the usual argument one concludes from do) = 0 that the one form o) can be rewritten as 
o) = dS(~ ,  ~ ) .  This procedure defines (up to a constant) a squared eigenfunction potential 
(SEP) S(~ ,  ~) .  In components, the flows of S(4~, ~ )  are given by 

OnS(~, ~) = Res(D-ltP L+/r crp D-1). (2.12) 

Especially, OxS(~(t), ~(t)) = ~(t)tP(t). As shown in [3] the squared eigenfunction 
potential defines a spectral representation of (adjoint) eigenfunctions. The statement is 
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as follows. Any (adjoint) eigenfunction of the general KP hierarchy possesses a spectral 
representation: 

f d3. ~ w ( t ,  L) S(c19(t'), * ' cb(t) = - ~Pw(t, )0), (2.13) 

qz(t) = f d)~ 7t~v(t, 3,) S(Ttw(t ' ,  )~), q~(t')), (2.14) 

with spectral densities given by the squared eigenfunction potentials at some multi-time t '  = 

(t' l , t~ . . . .  ) taken at some arbitrary fixed value. The r.h.s, of (2.13) and (2.14) do not depend 
on t'. Furthermore, the closed expressions have been found in [3] for those squared eigen- 

function potentials which have as argument at least one oscillating wave-eigenfunction: 

1 
S ( ~ ( t ) ,  ~p~v(t, )Q) = - - ~ v ( t ,  )Q~( t  + [~-I1),  (2.15) 

1 
SOPw(t,  )0, qJ(t)) = -~grw(t, )O~( t  - [) -1]).  (2.16) 

In the above equation SOPw ( t , )0 ,  q~(t)) is the squared eigenfunction potential (SEP) as- 
sociated with a pair of  eigenfunctions ~Pw(t, )~) and ko(t). It is an oscillatory function of 
order - 1: 

Oo 

SOPw(t, )Q, ~ ( t ) )  = E s j ( t ) ) ~ - J  e ~ ( t ' z )  = [q/(t))~ - l  + O()~-2)] e ~;'x). (2.17) 
j = l  

We will now make connection to the language of the universal Sato Grassmannian. 

Consider the hyperplane W defined through a linear basis of  Laurent series {fk 00} in )~ in 
terms of the wave-eigenfunction as a generating function: 

W - -  span( f00 . ) ,  f l  (Z),  f2()0 . . . .  ) 
O k 

fk(,k) = -~xk lPw(t, )~) ~=t2=t3 . . . . .  0 (2.18) 

Obviously, W is closed under the differentiation O/ax. From the fact that 7tw (t,)~) satisfies 
Eq. (2.3) we obtain an alternative definition of W: 

W = span{aPw(t, )Q, all t 6 C ~} (2.19) 

A typical element of  W; fk (X) = ()fl~ + O(Z k-  l)) exp ~ (t,)~), has an order k > 0. Conse- 
quently, the set of  orders of all elements of  W is given by the set of  non-negative integers. 

In case of  the standard rth KdV reduction, the corresponding Lax operator/2 = D + 
Y ~  u i D- i  satisfies the constraint/~r = E~_, which translates to the Grassmannian language 
as U W  C W .  

It is clear that fd ;~  qr~v(t, X);((t ' ,  ;~) = 0 for any g( t ,  )~) ~ W. We will make here 
a plausible assumption that the inverse holds as well. More precisely, the statement is 
as follows. Let F(@w(t ' ,  )Q) be a linear functional of  ~ w ( t ,  )~) of a positive order for 
which the following bilinear equation f d~. gr~v (t, ~.)F OPw (t ' ,  ;~)) = 0 holds for all t ' ,  then 
F(aPw(t', L)) ~ W.  
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3. Differential  operators  and the canonical  pairing structure 

299 

Consider a differential operator of  order m: 

L , ,  = D m 'F u r n -  I D m -  1 q_ . . . q_ u I D 1 + ull.  ( 3.1 ) 

The differential operator of  order m is called m o n i c  if its leading term is Dm. A monic 

differential operator of  order m is fully characterized by m elements of its kernel. For 

instance, let functions ¢i, i = 1 . . . . .  m constitute a basis for Ker L,,I = {¢1 . . . . .  ¢,,1 }. then 

W m + l  [¢1 . . . . .  q~m, f ]  
L m  ( f )  = ( 3 .2  ) 

w,.[¢1 . . . . .  (ml  

The elements of  Ker Lm are assumed to be linearly independent so that the Wronskian 

matrix 

(Wm x m ) l < i , j < m  "~- o.J--[•i (3.3) 

is invertible. In different words the Wronskian determinant Wm [¢1 . . . . .  (m ] = det II IN,,, ×,1111 
must be different from zero. Let - 1 • ( W m x m ) i  j ,  l, j = 0 . . . . .  m - 1, be the matrix elements of 

the inverse of  the Wronskian matrix W m  xm- The following relations are then satisfied: 

I i l  17l 

= , (] /Vm×m)kl  = (~j.l, (3.41 

j = l  k=l 

and 

-1 1)i+ j det(j.i) ][Wm ×m 11 (3.5) 
( ] / V m x m ) i j  = ( - -  Wm[~)l  . . . . .  ~),n]' 

where the determinant on the right-hand side is the minor determinant obtained by extracting 

the j th  row and ith column from the Wronski matrix I/V,,, ×m given in Eq. (3.3). 

The following technical identity: 

m 

V~('IA ~ - I  ~ v ( j-- l)  
/ ,~. VVmxtnJi.j  /~ 

i =  I 
A 

= (_ l )m+ i Wm[~)l  . . . . .  q~i . . . . .  q~m, X] 
W m [ ¢ l  . . . . .  qS,,,] , i = 1 . . . . .  m .  (3.6) 

which is valid for an arbitrary function X, follows directly from (3.3)-(3.5). 

In addition, we also need to consider an adjoint operator L,* obtained from (3.1) by a 

process of  conjugation described below Eq. (2.3). Let ~Pl . . . . .  0,,1 be elements of the kernel 

of  an adjoint operator L m : 

Ker L,* n = {01 . . . . .  1/tm}. (3.7) 

They are given in terms of  elements of  Ker L m  via relation [9,10]: 

¢ i  = ( - - 1 )  m+i W m - l [ ¢ l  . . . . .  (t" . . . . .  ( m ]  i = 1 . . . . .  m .  (3 .8)  
Wm[¢Z . . . . .  ¢.11 
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Comparing with (3.5) we see that relation (3.8) expresses the fact that (Ol . . . . .  apm) T is the 

last column in the inverse W - l  of the Wronskian matrix )4; of (q~l . . . . .  ~bm). In particular, 

we see that the functions {~Pl . . . . .  ~m} are also linearly independent. 

Some of  the obvious consequences of definition (3.8) and connection between functions 

~i  and the matrix W - l  are: 

m 

~_,dPff)(t)~Pi(t) = 8k,m-I for k = O, 1 . . . . .  m - 1. (3.9) 

i=l  

For completeness let us list the extension of  (3.9) to k = m: 

m m A 

Z ~);m)(t)~ri(t ) : E ( _ i ) m - i  Wm-'[~'  . . . . .  ~' . . . . .  ~)m](~; m) 
Wm[(91 . . . . .  ~m] 

i=1 i-~l 

= 0x In Wm[~l . . . . .  ~m]. (3.10) 

Consider now the quantity N -=- zim=l ~i O-1 1~i. It follows easily that 

m 

( L m N ) -  = Z Lm((Pi)D -1 ~i = 0. (3.11) 
i=1 

Moreover, using the Leibniz rule we obtain from (3.9) and (3.10): 

(LmN)+ = Lm 
+ 

= (Lm(D -m + D- l -msx  In Wm[~l . . . . .  4~m] + O ( D - 2 - m ) ) ) +  = 1. 

(3.12) 

Hence, as in [9] we obtain from (3.11) and (3.12): 

Lm 1 = ~ t~i D - I  l~t i. (3.13) 

i=1 

Consider now R e s ( D - l ~ j  Lm ~_,im=l ~i D-1 l~i)" In view of (3.13), we find 

Res D - I ~ j L m  (hi D -1 ~i = l~rj = R e s ( D - I ~ j L m  (Pi D-1)~i .  (3.14) 
i=1 i=1 

One notices that 

Ox R e s ( O  -1 ~tjZm ~i O -1 ) = ~jLm((bi) + Z* (~j)  ~i = O, (3.15) 

and therefore Res(D -1 ~pjLm q)i D - l )  is a constant in x. Since functions ~i are linearly 

independent, we conclude in view of  Eqs. (3.14) and (3.15) that: 

Res(D -1 ~j Lm q)i D- I  ) ~- ~i,j. (3.16) 
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It appears, therefore, that {(/1 . . . . .  tom} can be viewed as dual basis of  {4h . . . . .  ~bm} with 

respect to a canonical pairing defined in terms of  the so-called bilinear concomitant (see 

[11-13]): 

(~b[~)L,, ' ~ Res(D - l  tPLm(bD -I  ) (3.17) 

m i -  1 

~-" Z Z ( -  1)j q~(i--j--l) (U i l/f )(j) (3.18) 
i=1 j=0 

with Um= 1. In this setting the bases {4h . . . . .  q~m} and {~Pl . . . . .  ~Pm} related through (3.8) 

are dual to each other in the sense of  satisfying (dpi I~PJ)L,, = ~ij for i, j = 1 . . . . .  m due 

to (3.16). The following technical lemma provides a useful characterization of  the products 

(XIIPi)L,,, for an arbitrary function Z and ~i E Ker L~.  

L e m m a  3.1. The following identity." 

m 

~"~¢]a)--I ,~ v(j--I)  
(XII~i)L,,, ~- ~ . . . ~ t ' V m x m H j A  , i = 1 . . . . .  m, (3.19) 

j= l  

holds for  an arbitrary function X and ~ i  E Ker L*.  

m ( W  m×m)ij Dj be (m - 1)-order differential operator for the fixed Proof .  Let M i  = Y~j  = 1 - 1 

i. We know its m - 1 null-functions q~k such that Mi(dPk) = 0 for k ~ i. We also have 

Mi (q~i) = 1. This characterizes Mi completely. Note, that the (m - 1)-order differential 

operator (.l~pi)L,,, agrees with Mi o n  ~b i , i = 1 . . . . .  m, which completes the proof. [] 

Recalling identity (3.6) we find an alternative way of  writing (3.19) as 

(Z  il[,ri ) L,, ' = ( _ l ) m +  i W m [ ~ l  . . . . .  d/)i . . . . .  (Pm, X] 
Wm [q~l . . . . .  4~m] ' (3.20) 

from which the next corollary follows. 

Corollary 3.1. 

(Xl~i)L, , ,  = ~ ' i Lm. i (X ) ,  (3.21) 

where Lm i are the ordinary differential operators of  order m - 1 whose kernels are given by 

Ker( Lm,i ) = {~bl . . . . .  ~bi . . . . .  ~bm }. Correspondingly, the action o f  Lm, i  is defined through 
A 

Wm[f])l . . . . .  ~i . . . . .  ~m, X] 
' A  • 

L m ' i ( X )  ~" W m - I  [~bl . . . . .  t~i . . . . .  t~m] (3.22) 

We will now introduce isospectral deformations of  the differential operator L m of the 

form: 

OnLm = B n L m  - L m B n ,  n = 1,2 . . . .  (3.23) 
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In this setting we will show that the product {. I'}Lm defines a canonical pairing Ker Lm × 

Ker L,* --~ C. As discussed in [12,13] this pairing is nonsingular. 

The two families of  differential operators Bn and Bn are both assumed to satisfy Zakharov- 

Shabat equations: 

0 = O k B n - 0 ,  B k + [ B n ,  Bk], k , n =  1,2 . . . . .  (3.24) 

to ensure commutativity of  flows defined in (3.23). From (3.23), we find that 

OnLm I = BnLm I - Lml Bn, n = 1, 2 . . . .  (3.25) 

The following result applies to this case [10].  

L e m m a  3.2. Eqs. (3.23) imply that Oi ~- Ker Lm and 7:i E Ker L~n are "up to a gauge 

rotat ion" ( adjoint  ) eigenfunctions satisfying: 

OnOi -~- Bn(Oi),  i = 1 . . . . .  m,  (3.26) 

OnT:i = - B * ( ~ i ) ,  i = 1 . . . . .  m.  (3.27) 

Proof. From OnLm(Oi)  -~-  0 and (3.23) we find that n n ( O i )  - OnOi E Ker Lm. Hence we 

can write 

(n) ~ 
On(Oi) - anOi = - Oj cji (t),  (3.28) 

j=l  

where }" = (t2, t3 . . . .  ). We now proceed in a way similar to the one used, in a slightly 

different setting, in [14]. Define ( An) jk  = OnSjk -- _(n) ckj SO that we can compactly rewrite 

(3.28) a s  ( A n ) j k O k  = Bn(Oj  ). The Zakharov-Shabat equations (3.24), ensure the zero 

curvature equation ([ A , ,  Al] ) i kO  k = 0. Thus the "connection" c~. ) is a pure gauge and 

can be cast in a form 

C(n) :7~ ij ~t) = (c - l ) i k (? )  On ck j ( t ) ,  n > 2. (3.29) 

Define accordingly 

~bj ~ Ok (C- l)kj (3.30) 

It is easy to verify that q~j satisfy 

On@j = (AnO)k (C- l)kj = Bn (4)j). (3.31) 

Similarly, from On L*~ (~i) = 0, we arrive at 

B~(1]t,)-.[- Onl]f i = ~--~ c~ ' ( t ' )~ , .  (3.32) 
j=l 
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(n) :(n) 
We will now establish a relation between coefficients cii J ci. i . . We need at this point the 

technical identity: 

[ K ,  f D - l g ] _  = K ( f ) D - J g - -  f D - I K * ( g )  (3.33) 

valid for a purely differential operator K and arbitrary functions f ,  g. We find from (3.25) 

and the above equation that 

111 IH 

(OnL;l)  - = ~--]~(Bn(4)i))D - l  ~fi -- ~ ~i D - I  Bt*~(l[ti). (3.34) 
i = l  i = l  

Eqs. (3.28) and (3.32) agree with (3.34) provided 

-~.  In) - ( ' z )~ '~ 'D-~j  = 0. (3.35) (Cij + Cij Jv't 
i..j=l 

Define a differential operator of (m - 1 ) order: 

m s -  I 

K[4q = Z ~-~ ulDt(4))(~-I-l) (3.36) 
s = l  1=0 

such that K*[q~](Tt) = (~blTz)L, ,. From (3.35) and (3.16), we find 

\ i .  j = I 

o r  

m 

= 0 ,  k =  . . . . .  m 

i=1  

(3.38) 

(n) - (n)  
Since {4~i} are linearly independent we find from (3.38) that Cij = --Cij  for all i, j = 

, n / r  
1, m. Accordingly, (A,*)jkTtk = --(Era+l)+ (TZj) with (A*)jk ~ On6jk + c ~'') Define . . . .  j k  • 

next 

(0 i - Cjk ~k. (3.39) 

It tbllows that 

= = ( 3 . 4 0 )  

Hence we succeeded to find a mutually inverse gauge rotation taking 4~i 6 Ker L m and 

~i E Ker L,*, into (adjoint) eigenfunctions satisfying (3.26) and (3.27). [] 

L e n n n a  3.3. Let ~b and ~p satisfy Eqs. (3.26) and (3.27) with respect to flows entering 
Eq. (3.23), then 

On((P[~) L,,, = R e s ( D - l  ~ BnLm(qS) D - I  ) - Res (D- I  L*  ( ~ )BndP D- I  ) 

= ( L m ( 0 ) [ ~ ) ~ ,  - -  (4~1L,*,(~))8,, n = 1,2 . . . .  (3.41) 
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Proof. Proof follows from the technical lemma [1]: 

R e s ( D - I L I L 2 D  -1) = R e s ( D - I ( L ~ ) o L 2 D  - I )  + R e s ( D - 1 L I ( L 2 ) o D - I ) ,  (3.42) 

where Ll and L2 are arbitrary differential operators and (')0 denotes projection on the 

zero-order term. With help of  relation (3.42) we can rewrite Res(D-17z L m Bn 49 D - l  ) as a 
sumofRes (D- IL*(~r )Bn49  D - l )  andRes(D-laPLmBn(49)D-1) .  [] 

Corollary 3.2. For 49 ~ Ker Lm and 7t ~ Ker L* and Lm satisfying Eq. (3.23) it holds 

that 0n(49[~P)/~,,, = O for  n = 1, 2 . . . .  Accordingly, ('[')Lm defines a canonical pairing 

Ker L m × Ker L* --~ C. 

As a special case (n = 1) of  Lemma 3.3 we obtain a basic relation: 

Ox(49lTZ)c,,, = Lm(49) 7t - 49 L*m(Tt). (3.43) 

Note that the result (3.43) is valid this time for an arbitrary 49, ~p as follows by a direct 

verification. 
Another consequence of  Lemma 3.3 reads as follows. 

Coro l la ry  3.3. For 49, 7 r satisfying condition of  Lemma 3.3 and the differential operator 

Lm whose isospectral flows are given in (3.23) the following relation: 

(4911/r)L m = S(Lm(49), ~z) -- S(49, L* (T t ) )  ( 3 . 4 4 )  

holds up to a constant (in the multi-time t). 

Eq. (3.44) follows easily from Eq. (3.41) and relations: 

= (491Lm(llt))B, ' (3.45) OnS(Lm(49), ~ )  {Lm(49)l~)~", OnS(49, L*  (~))  = * . 

Corollary 3.3 establishes a relation between the bilinear concomitant and the square eigen- 
function potential. 

4. Lax operator representation of the cKP hierarchy 

We are studying here the class of  constrained cKP hierarchies for which we have the Lax 
representation: 

r - - 2  m 

L =  Dr + Z u l D I  + Z ~ i D - I ~ i  = B r " ~  cloiD-l~i (4.1) 
/ = 0  i = l  i = l  

with q~i and koi being (adjoint) eigenfunctions of  the Lax operator L as in (2.3). As shown 
in [6,7,10] the CKPr,m hierarchy can be expressed in terms of two normalized differential 



H. Aratyn/Journal of Geometry and Physics 30 (1999) 295-312 305 

opera tors  Lm and Lm+ r of order m and r + m, respectively. The Lax operator (4.l) of the 
cKP r,m hierarchy is in this representation being rewritten as a ratio: 

m 

L = L~nlLm+r = i m + r ( ~ i )  + B,.. (4.2) 
i=1 

The wave eigenfunction Ow (t,)~) of (4.1) is an eigenfunction (as in Eq. (2.3)) which addi- 
tionally satisfies the following spectral equation: 

L~w(t , )~)  = Br(Ow(t,)~)) + ~ qbi ( t )S(~w( t , )~) , tPi ( t ) )=)~ '  ~w(t,)~).  (4.3) 
i : 1  

In Eq. (4.3), SOPw(t, )~), qJi (t)) is the squared eigenfunction potential (SEP) associated 
with a pair of eigenfunctions ~Pw (t,)~) and ~Pi (t). 

5. Universal Sato's Grassmannian construction of the cKP Hierarchy 

Let us first introduce the following basic definition. 
Definition 5.1. For the wave-eigenfunction ~Pw (t,)~) of the KP hierarchy and ~i 6 KerL~,, 
we define m objects: 

Si(t,~.) :~)~r(1/ .rwl~f i) t , , , ,  i = 1 . . . . .  m. (5.1) 

As seen from Eq. (3.43), these m objects Si (t,)~) defined in (5.1) satisfy 

~ x S i ( t , ) ~ ) = ~ . r ~ i L m ( ~ W ) ,  i =  1 . . . . .  m. (5.2) 

Note also that expressions (5.1) and (3.21) lead to 

Si(t ,  )~) = )~r ~fiLm,i(~W), (5.3) 

where Lm,i are the ordinary differential operators of order m - 1, whose kernels are given 

by Ker(Lm.i) = {q~l . . . . .  ~// . . . . .  q~m}. The action of Lm,i is defined in Eq. (3.22) 
Consider the KP hierarchy determined by the wave-eigenfunction 7tw (t,)~) with the asso- 

ciated hyperplane W in the universal Sato Grassmannian as in Eq. (2.18). Let {~Pl . . . . .  q~m } 
be m linearly independent functions. Let furthermore Si (t,)~) be m objects defined as in 
Definition 5.1 in terms of functions ~i dual to ~bi according to (3.8) and in terms of the 
wave-eigenfunction ~Pw (t, Z) of the underlying KP hierarchy. The following main propo- 
sition establishes a connection between cKP r,,,, reduction of the KP hierarchy and the 
Grassmannian formulation. 

Proposition 5.1. The KP hierarchy associated to the hyperplane W in the universal Sato 

Grassmannian is of  the reduced CKPr,m ~. pe if and only if the following two conditions." 

~xSi(t, )~) c W, (5.4) 
m 

~-~CiSi(t ,  )~) E W = 0, (5.5) implies Ci 

i=O 
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are satisfied for some m linearly independent functions {4~1 . . . . .  ~ m  }. The correspond- 
ing Lax operator is of the form L = Br + Y~im-i ~ iD- | ~ i  with (I) i = ~i and gti(t) = 
f d)~ 7t~v (t,)0 Si (to,)0. 

Proof.  We start the proof with the cKP r,m system as given in (4.1) with both {~) i  } and {@ } 

being linearly independent set of  functions and we are going to show that the conditions (5.4) 

and (5.5) hold. We take ~i  = ~bi. It follows from (4.3), (2.18) and OxS(~tw(t, )0, q;i(t)) = 
~w(t, )~ )~oi (t ) that 

m 

~.r lp (wJ) (t, ) Q -- Z(p~J)(t)S(~w(t , )Q,  ~( t ) )  E W, j = 0  . . . . .  m - 1, (5.6) 
i = 1  

or in the matrix notation: 

~Pw(t,)Q ) (SOPw(t ,~.) ,~l( t))  
~ (wl) (t, )~ ) SOPw(t, ~.), qs2(t)) 

) r  . - -  ] /~m x m  . E W (5.7) 

~k ~0(w m-I) ( / ,  )Q S(~w(t,  ~.), grin(t)) 

meaning that each element of  the above combination of columns belongs to the Grassman- 
nian W. One finds easily from (5.7) and 0x S(gtw (t,)0, q/i (t)) = ~w (t,)~)q/i (t) that 

r - l  7t~)( t '  ~') 
), OxWmx m . E W .  ( 5 . 8 )  

¢~wm-~(t,X) 

-1 In terms of the matrix elements (W m xm)i j  from (3.4), relation (5.8) takes a form 

m - - I  
- l  ( j )  )~rOx Z(]/~n×m)i j~w (t, ~.) E W (5.9) 

j=0 

for each i = 1 . . . . .  m. This yields condition (5.4) due to Lemma 3.1. 
Recalling Lemma 3.1, we see that (5.7) implies 

S(aPw(t, ~.), koi) - 8i(t, ~.) ~ W, i = 1 . . . . .  m. (5.10) 

If  now it holds that 

m 

Z c i S i ( t ,  ~.) E W, (5.11) 
i=1 

then because of relation (5.10), Eq. (5.11) implies that 

m 

Z c i S ( f f / w (  t, ).), ~i)  E W, (5.12) 
i=1  
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and therefore due to Eq. (2.17), Y~m_l ci ~ ~-1  exp ~ (t, ~) = 0. We note that from the linear 

independence of { I/-t I . . . . .  Iff m }, it follows that ci = 0, which is the desired result. Moreover, 

kOi (t) = f dZ ~ v  (t,  X) Si  (to, X) holds due to (5.10). 
From now on, we will assume that given is the system of the linearly independent functions 

{~bt . . . . .  4)m} together with conditions (5.4) and (5.5). We are going to show that the KP 
hierarchy associated with the wave-eigenfunction aPw (t, X) satisfying constraints (5.4) and 

(5.5) belongs to the cKP r.m class. 
We start by defining m functions: 

q',(t ,  to) - f X), i = 1 . . . . .  m,  (5.13) 

with Si( to ,  X) defined as in (5.1). First, it follows clearly from definition (5.13) that qJi is 

an adjoint eigenfunction in the multi-time t. Secondly, ~. is non-zero only for S/(to, )0 not 
in W due to the Hirota 's  identity. According to the condition (5.5), the m functions qJi are 

linearly independent. 
What remains to be proven in order to establish that qJi from Eq. (5.13) are adjoint eigen- 

functions is that the functions ~ do not depend on the second multi-parameter to. Indeed, 

from the condition (5.4), it follows immediately that 3x0 ~i (t, to) = 0, and accordingly 

q/i does not depend on x0 = (to) I. To complete the proof it remains to show that indeed 

Otlti/3(tO)n = 0 f o r n  > 1. 

Define an oscillatory function ~Pv ( t , )0  by 

L m ( ~ w ( t ,  )0)  =- xm~Pv( t, )0 . (5.14) 

Since lPw(t ,  X) = W e x p , ( t ,  X) where W is a dressing operator, we find that aPv(t, X) = 

Vexp~( t ,  X) where V = L m W D  - m  has like W a form of the dressing operator V = 
o0 D _ i .  = __ 1 + ~ i = 1  vi Alternatively, we can rewrite Lm V D m W  -1 .  Consider Lm+r = 

V D m + r w - I  such that L m + r ( ~ w ( t ,  X)) = U L m O P W ( t ,  X)). Since X r L m ( ~ w ( t ,  X)) E W, 

the operator Lm+r  is an ordinary differential operator. Moreover, we find that the KP Lax op- 
erator L = W D r W -  1 can be written in terms of two ordinary differential operators as L = 

LmlLm+r .  From [15-17], we know that the KP hierarchy equations 3nL = [ (L)+/r , L] 

for L = LmlLm+r  are equivalent to the following flows on the differential operators Lm 

and L m +  r : 

3nLm (Lm+rLml)+/r  Lm . ~ . . - 1 .  .dt/r -- ~ m l , ~ m  ~ m + r ) +  , 

= L .n/r OnL,n+r (Lm+rLml)+/r  Lm+r - Lm+r(Lm I re+r)+ . 

(5.15) 

(5.16) 

It has been shown in [10] that Eqs. (5.15) and (5.16) imply that Oi E KerLm and ~Pi 
Ker L*  are "up to a gauge rotation" (adjoint) eigenfunctions satisfying 

t L _ l  L .~n/r On~)i = ~, m m+r)+ (~bi), i = 1 . . . . .  m,  

On~i -~- - - ( (Lm+rLml)* )+/r  (~ i ) ,  i = 1 . . . . .  m 

(5.17) 

(5.18) 
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We recognize in the above equations the setting of Lemma 3.2 with Eqs. (5.17) and (5.18) 
being special cases of  (3.26) and (3.27). Especially, we may use the results of  Lemma 3.3 
and Eq. (3.41) to find 

OnSi = ) r (Lm (~w)[  l[ti ) (Lm+ r Lml) ; / r  = ) r An-1 ( Lm (~bw) ), (5.19) 

with An-I being (n - 1)th order differential operator. Since )~rAn_ 1 (Lm(~tw)) E W, it 

follows immediately that 0 q/i/O (to), = 0 and indeed ~ is a function of the multi-time t only. 
Note that on basis of relation (3.19) the alternative form of definition (5.13) appears to be 

m - - 1  

~(t) =_ ~_~ (Wm-~× m )ij (to) f dxxro~(t,X) O~)(to, Z). (5.20) 
j=0 

Accordingly, using (3.4), we find (see also [18]): 

m 

Z (bi(to)Oi(t) = f dzxr o (t, z) Ow(to, )Q, (5.21) 
i=1 

from which it follows that 
m 

Z(OnqSi(to) -- Bn((bi(to)))~i(t) = 0, n = 1, 2 . . . .  (5.22) 
i=1 

or equivalently 

m 

Z(On(ai (to) - Bn (dpi (t0)))S/(t, K) • W. (5.23) 
i=1 

From the last identity (5.23) and condition (5.5), we conclude that 4~i are eigenfunctions 
f o r / =  1 . . . . .  m. 

Recall that L ~Pw (t, ~.) = Z r 1/r W (t, ~.) = L + 0Pw (t,)~)) + L_  0kw (t, k.)) with the pseudo- 

differential part L _ ( ~ w ( t ,  )~)) "- O0~ - l )  e x p , ( t ,  )0. Inserting it back into Eq. (5.21), we 
find 

m 

Z ~bi (to) ~ (t) = t d)~ ¢~v (t,)~) L_  0Pw (to,)0).  (5.24) 
i=1 d 

From [3], we conclude that (5.24) implies 

L-(Ow(to ,  )Q) = (bi(to)-£Ow(to,)Qg~(to - [) -1]) (5.25) 
i=1 

up to terms in W. Equivalently, we can rewrite the last relation in the desired form 

m 

= ~_dpi ( t )S(~w( t ,  ,~), Oi(t)), (5.26) L - ( O w ( t ,  )~) ) 

i=1 

from which Eq. (4.1) follows due to the fact that the pseudo-differential operators act freely 
on the wave-functions as seen from (2.11). [] 
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6. Truncated KP hierarchy as cKP hierarchy 
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Let us consider the truncated KP hierarchy defined by the dressing operator W containing 

only finite number of terms. Let K be a positive order differential operator of  the order N, 

such that N > m and such that W = K D  -N.  Accordingly, the corresponding Lax operator 
is 

Ltr = K D r K  -1 = W D r W  - I .  (6.1) 

Let ~ and gi with i = 1 . . . . .  N be elements of  the kernels KerK and KerK*, respectively. 

As shown in [14] the Wilson-Sato equations (2.4) for the hierarchy defined by the Lax 

operator (6.1) take a simple form for the elements of KerK: 

O,,fi = on f ,  i = 1 . . . . .  N.  (6.2) 

Recall that 

N 

K-1  = E f i D - I  gi' (6.3) 
i=1 

and consequently 

N 

R e s ( K D "  K - I )  = E K D r ( f i ) g i  
i=1 

N ,c(r)l w r  .c 
~ -"~(__I )N_ i W [ f l  . . . . .  fN ,  Ji J tJl . . . . .  f /  . . . . .  fN] 

i=1 wZ[f l  . . . . .  fN] 

N A 
Z~V~(- 1 ) N - i  W [ f l  . . . . .  f i  . . . . .  fN ,  f i  (r)] 

OF 
i=1 W [ f l  . . . . .  fN] 

= OxO~ in W[f~ . . . . .  fN] ,  (6.4) 

where we used the Jacobi identity 

W [ W [ f l  . . . . .  fin, g], W [ f i  . . . . .  fro, hi] 

= W [ f i  . . . . .  f m ] W [ f l  . . . . .  fm, g, h], (6.5) 

and (6.2). 

Hence we reproduced the well-known result that the tau function for the truncated KP 

hierarchy is the Wronskian rtrun = W [ f l  . . . . .  f~] .  

Due to (6.2), we can rewrite fi as ft = f dz J~ (z) exp(~(t, z)). Notice that 

K exp($(t, )0) = ,kN~pw(t, k) (6.6) 

due to the fact that W = K D  -N  is the dressing operator of  the truncated hierarchy. It holds 

therefore that 

0 = K ( f i )  = f dz z N ~  (Z)~Pw(t, Z). (6.7) 
d 
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Accordingly, for any positive differential operator B, we find 

fdzzNh(z)B(Ow(t , z ) )=B(fdzzS~(z)Ow(t , z ) )  = 0  (6.8) 

We now investigate the condition for Ltr to be within cKPr, m in the non-trivial case 

N > m. As shown above, the necessary condition for this to happen is that ~,rLm (~rW) E 
W or that there exists a positive differential operator B such that ~.rLm(~rW) = n ( ~ w ) .  

Comparing with (6.8), we find that ~,rL m (~W) E W translates into 

O= f dz zN ~(z)zr gmOPW(t, z)) = Lm ( f  dz fi(z)zr+:V ~Pw(t, z)) 

=Lm ( f  dz fi(Z)ZrKe~(t'z') = LmKDr(fi) (6.9) 

for all i = 1 . . . . .  N. 
Hence KDr(fi) ~ Ker(Lm) for i = 1 . . . . .  N. In [9] this condition was rewritten using 

a Jacobi identity for Wronskians as 

WNq-mq-1 [f l ,  .. fN ,  f/(l r), f.(r) ] .~- O. (6.10) 

7. Concluding remarks 

We have seen that formulating the constrained KP hierarchy within the Sato Grassman- 

nian becomes transparent when use is being made of the underlying ordinary differential 
operators with convenient parametrization of their kernels. Useful insight has been obtained 

by relating the notions of kernel elements of the underlying ordinary differential operators 
with that of the eigenfunctions of the KP hierarchy. The related connection of the bilinear 

concomitant introducing the canonical pairing structure on the space kernels to that of the 
squared eigenfunction potentials has then arisen naturally. 

Let us complete our discussion by the following additional comments addressing funda- 
mental questions of the formalism. 

Remark  1. Due to relation (3.19) we have m Z i = I  (1)iSi • ~'r~'rW" Hence condition (5.5) 
can be understood as an obstruction to the usual KdV reduction with Xr~w ~ W. 

Remark  2. Alternatively to (5.5) we could have expressed the relevant assumption in terms 
of the integrals: 

m P 
Z ci I d3~ ~v(t, ~,),Si(tO, Z) :- 0 implies Ci = O. (7.1) 
i=0 d 

instead of involving the Sato Grassmannian W in (5.5). The arguments used in the proof 
would then have worked with small adjustments but without any need of making an ad- 
ditional assumption that f d)~ Vz~v(t, )OF(~zw(t', ),)) = 0 implies F(~zw(t', ~.)) 6 W for 
FOPw (t', Z)) of the positive order. 



H. Aratyn/Journal of Geometry and Physics 30 (1999) 295-312 311 

R e m a r k  3. From definitions (5.14) and (5.15) we find that the flows of  7~v (t, k) are given 
by 

O,,~Pv(t, L) (Lm+rLm I n/r = )+ OPv(t, )0). (7.2) 

Based on (3.27) and (7.2) it makes now sense to define the squared eigenfunction potential 
S(~Pv, aPi) for fry (t, Z) and ~fi with the following useful property: 

Si (t, X) : X r+ ' '  SOkv, gel) (7.3) 

Due to Eq. (7.3) one can rewrite Eq. (5.13) as 

f d,~ ,k r+m ~ ¢  (t, ~.) SOPv (to, ,k), ~Pi (to)), i = 1 . . . . .  m. (7.4) (t) 

Since 0x0 k°i (t, to) = 0 it holds that f d)~ ,k r+m ~P~v (t, X) ~v  (to, L) = 0. 
r + h i  * Furthermore it is easy to see that X ~Pw ( t , ) ~ )  = Lm+r* (~Pv* (t, ,k)) as follows from defi- 

nition (2.7) and ~ (t, X) = V* - l  exp - ~ ( t ,  )0 together with L~+r = W* I (_D), ,+,-V*. 

Plugging it back in (7.4) we obtain the expression tor q/i in terms of  Vii: 

q~i(t) = ; d)~ * * X)) )~), Lm+r(~v(t ,  S(Vzv(to, ~ki(to)) : L,*~+r(~i). (7.5") 
d 

R e m a r k  4. According to (5.2), the inclusion 8xSi E W can be rewritten as X"L, , (~w) 

W, where Lm is an m-order differential operator whose action on the wave function ~Pw 

can be viewed as m successive Darboux-B~icklund transformations. With the kernel of 

L,, being {q~l . . . . .  q~m}, let wj be such that q~j = f dX X - l  (VtwWi) for j = 1 . . . . .  m. 

Accordingly, wj are orthogonal to the subspace W'  ~ span{Lm (~w)} of W with respect to 

the inner product (u Iv) = f d)~ )~- 1 u v. Hence, the inclusion ) :  W'  ~ W is a co-dimension 

m inclusion. Also, condition (5.5) in view of (5.3) expresses the assumption about the 
codimension m being optimal. This establishes link to the formalism of [6,7]. 
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